
Introduction
T helper (Th) lymphocytes can be divided into 2

distinct subsets of effector cells based on their func-
tional capabilities and the profile of cytokines they
produce. The generation of Th1 or Th2 cells from
Th precursor cells normally reflects the outcome of
naive T cell activation. Th1 cells are defined by
their production of Interferon-γ (IFN-γ) and tu-
mor necrosis factor-β (lymphotoxin), and Th2 cells
produce IL-4, IL-5, IL-6, and IL-13. Th0 cells, a
common precursor cell for both Th1 and Th2 sub-
sets, produce IL-2 and a mixture of the 2 cytokine
patterns.

1-3
It has been shown that Th1 and Th2

cells exhibit differential responsiveness to IFN-γ. A
functional IFN-γ receptor (IFN-γR) requires 2 sub-
units, IFN-γRα chain (IFN-γR1 or CD119) and
IFN-γRβ chain (IFN-γR2). Although IFN-γR2
plays only a minor role in ligand binding, it is nec-
essary for IFN-γ signaling.

4,5
Unlike Th precursors

and Th2 cells, Th1 cells, which are capable of pro-
ducing IFN-γ after activation, do not respond to
IFN-γ, due to the lack of IFN-γR2 expression.

4,5

IFN-γ has been shown to enhance IL-12 produc-
tion, which thereby stimulates Th1 cell differentia-
tion.

6,7
However, signaling via IL-4, or with less po-

tency, granulocyte-macrophage colony-stimulating
factor, is required for IFN-γ to stimulate the produc-
tion of the bioactive form (p70) of IL-12 by anti-
gen-presenting cells, and stimulation with IFN-γ
alone leads to secretion of the nonbioactive p40 ho-
modimer form, antagonist IL-12.

7
It is striking that

the production of the bioactive p70 form of IL-12
is primarily controlled by IL-4, a Th2 cytokine.

7-9

Cytolytic CD8
+
effector T cells can also be classified

into 2 subtypes based on their cytokine-producing
profiles. Type 1 CD8

+
T (Tc1) cells secrete IL-2 and

IFN-γ, whereas type 2 CD8
+
T (Tc2) cells produce

IL-4, IL-5, and IL-13.
10,11

In addition to the Th1
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and Tc1 cells, activated NK and NKT cells are also
potent producers of IFN-γ.

12,13
There has been in-

creasing debate regarding the role of type 1 and
type 2 T cell cytokines in the pathogenesis of acute
graft-versus-host disease (GVHD) (for a review, see
refs. 14-16). In this article, we have highlighted
some of the murine studies on the role of IFN-γ in
the development of GVHD and in the induction of
graft-versus-leukemia (GVL) effects.

The Role of IFN-γγ in the 
Induction of Lethal Acute GVHD

IFN-γ gene knockout mice provide a powerful
tool for evaluating the role of IFN-γ in the patho-
genesis of GVHD. By using these mice, 2 inde-
pendent groups demonstrated in 1998 that IFN-γ
production by the donor cells is not required for
the development of lethal acute GVHD in irradiat-
ed mice after infusion of splenocytes and marrow
cells from major histocompatibility complex
(MHC)-mismatched allogeneic donors.

17,18
Host-

derived IFN-γ is also redundant in the induction of
lethal acute GVHD, as the disease can be induced
in the complete absence of this cytokine, that is, in
IFN-γ-deficient mice after infusion of allogeneic
cells from IFN-γ-deficient donors.

17
In some situa-

tions, IFN-γ can even be protective for allogeneic
bone marrow transplantation (BMT) recipients. It
has been observed that T cells from IFN-γ-deficient
donors induce more severe GVHD compared to
that induced by IL-4 (a Th2 cytokine)-deficient
donors.

18
Marked down-modulation of donor CD4

T cell-mediated GVHD by IFN-γ has recently been
demonstrated in a single MHC class II-mismatched
murine BMT model.

19
Administration of CD4

+
T

cells, along with marrow cells from IFN-γ-deficient
C57BL/6 mice to lethally irradiated B6.C-H2

bm12

(bm12) mice (disparate at class II), led to 100%
death by 20 days, whereas all bm12 mice receiving
a similar cell inoculum from IFN-γ wild-type
C57BL/6 mice survived long-term.

19
Similar to its

effect on CD4 T cells, IFN-γ has also been demon-
strated to inhibit GVHD induced by donor CD8 T
cells. Although BALB/c (H-2L

d+
) mice did not de-

velop lethal GVHD after infusion of bone marrow
and CD8 T cells from 2C mice that are transgenic
for a host class I (H-2L

d
)-specific T cell receptor,

20

administration of similar numbers of bone marrow

and CD8 T cells from IFN-γ-deficient 2C donors
caused severe acute GVHD with 100% mortality.

68

It has been reported that administration of exoge-
nous IFN-γ prevents GVHD in allogeneic BMT
recipients.

21,22

In contrast to these results, it has also been re-
ported that IFN-γ is critical for early GVHD
lethality in a parent → nonirradiated F1, C57BL/6
→ (C57BL/6xDBA/2)F1, model.

23
In this study,

the recipient mice were transplanted with donor
lymph node cells and splenocytes without hemato-
poietic stem cells. It therefore seems likely that hema-
topoietic failure, due to destruction of recipient
hematopoietic cells, is a primary cause of the early
mortality in this model. Indeed, despite the de-
layed mortality, administration of IFN-γ-deficient
C57BL/6 splenocytes and lymph node cells result-
ed in greater weight loss and more severe destruc-
tion of parenchymal GVHD target tissues in
(C57BL/6xDBA2)F1 mice.

23
A recent study consis-

tently demonstrated that in a C57BL/6 → bm12
(class II only-mismatched) combination, IFN-γ is
protective in lethally irradiated recipients of allo-
geneic donor marrow and T cells but deleterious in
sublethally irradiated mice receiving allogeneic T
cells only.

19
This role of IFN-γ in eliminating recip-

ient hematopoietic cells can actively be exploited to
benefit in the setting of hematologic malignancies.
It has been shown that lymphohematopoietic GVH
reactions that selectively eliminate host lymphohe-
matopoietic cells, including lymphoma cells, can be
induced without severe systemic GVHD in allo-
geneic BMT recipients.

24-26
IFN-γ is required for the

induction of optimal anti-lymphohematopoietic
GVH reactions while inhibiting GVHD in mice.

68

Such lymphohematopoietic GVH reactions might
be beneficial in leukemic patients receiving allo-
geneic BMT if they predominantly eliminate host
lymphohematopoietic cells.

Role of IFN-γγ in IL-12-Mediated 
GVHD Protection

It has been previously demonstrated that a sin-
gle injection of IL-12 at the time of BMT marked-
ly inhibits the development of acute GVHD in
mice.

27-29
In murine acute GVHD models, serum

levels of IFN-γ are increased in association with the
activation of allogeneic donor T cells.

30,31
However,
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a single injection of IL-12 on the day of BMT com-
pletely alters the kinetics of IFN-γ production.
Studies in the A/J → B10

27
and CBD2F1→ B6D2F1

(Yang et al., unpublished data) strain combinations
showed that serum IFN-γ levels are markedly in-
creased in IL-12-treated allogeneic BMT recipients
on days 2 and 3 post-BMT, when IFN-γ is unde-
tectable in untreated GVHD control mice. In con-
trast, by day 4, when high levels of IFN-γ are de-
tected in sera of GVHD controls not treated with
IL-12, IFN-γ becomes almost undetectable in sera
of IL-12-treated mice. Unlike the untreated allo-
geneic BMT recipients, in which IFN-γ is primari-
ly produced by activated T cells, the early IFN-γ in
IL-12-treated mice is produced mainly by NK or
NKT cells

27
(Dey, Yang, and Sykes, unpublished

data). Further studies have demonstrated that this
early IFN-γ production in response to IL-12 is re-
quired for inhibition of GVHD by IL-12. Admin-
istration of anti-IFN-γ mAb on day 1 post-BMT
completely eliminated the protective effect of IL-12
against GVHD,

32
and IL-12 was unable to inhibit

GVHD induced by IFN-γ-deficient allogeneic T
cells.

17
IL-12 cannot prevent donor T cell activation

and GVHD mortality in C57BL/6 mice trans-
planted with IFN-γ-deficient BALB/c T cells,
whereas it does so effectively in C57BL/6 mice re-
ceiving IFN-γ+/+

allogeneic donor cells.
17

It has been reported that an environment with a
high concentration of IFN-γ in the absence of
IL-4 favors production of antagonistic IL-12.

7
Thus,

it is possible that the early IFN-γ production by
NK cells in response to IL-12, before donor T cells
have been activated, may inhibit the subsequent de-
velopment of GVHD effector cells. On the other
hand, Fas-mediated donor T cell apoptosis has been
shown to be one of the likely mechanisms for in-
hibition of donor T cell activation and expansion
in IL-12-treated allogeneic BMT recipients,

28
sug-

gesting that IFN-γ may, directly or indirectly, regu-
late Fas expression or sensitivity to death through
the Fas pathway, thereby inducing apoptosis of
GVH effector cells. Consistent with this possibil-
ity, it has been reported that IFN-γ plays an im-
portant role in regulating Fas-mediated death of ac-
tivated T lymphocytes.

33,34
FN-γ has also been

demonstrated to facilitate the induction of allograft
tolerance

35-37 
through mechanisms involving an

apoptosis-independent down-regulation of T cell
proliferation.

35,36
Such direct anti-proliferative func-

tion of IFN-γ may also contribute to the inhibition
of donor T cell activation and expansion in allo-
geneic BMT recipients treated with a single dose of
IL-12. In addition, inducible nitric oxide (iNO)
has been shown to play an important role in IFN-γ-
induced immunosuppression by inhibiting anti-
gen-driven proliferation

38,39 
or inducing apoptosis

40-42

of antigen-specific T cells. It remains unknown
whether or not iNO is also involved in the IFN-γ-
dependent GVHD inhibition induced by a single
injection of IL-12 at the time of BMT.

IFN-γγ Is Required for Optimal
Donor CD8 T Cell-Mediated GVL 
Effects in Allogeneic BMT Recipients

Potent GVL effects are an important benefit of al-
logeneic BMT in humans. To be of maximal clini-
cal benefit, however, these must be achieved with-
out severe GVHD. Studies using an EL4 (H-2

b
)

leukemia/lymphoma model showed that irradiated
C57BL/6 recipient mice inoculated with EL4
leukemia and allogeneic A/J bone marrow and
spleen cells can be simultaneously protected from
both GVHD- and leukemia-induced mortality
when IL-12 is given.

32
Like the protective effect

against GVHD, the GVL effect in IL-12-treated
mice is also dependent on IFN-γ. Treatment with
neutralizing mAb against IFN-γ on day 1 post-
BMT attenuates the anti-tumor activity of allo-
geneic CD8 T cells in IL-12-treated allogeneic
BMT recipients.

32
Acute GVHD has proved to be

largely CD4 T cell-dependent in most fully MHC
plus multiple minor antigen-mismatched strain
combinations in mice.

43-48
In the A/J → C57BL/6

combination, depletion of donor CD8 T cells by
mAb does not prevent the development of acute
GVHD. In contrast, substantial numbers of CD4-
depleted donor spleen cells do not induce acute
GVHD. However, GVL effects against EL4
leukemia are dependent on donor CD8

+
cells and

independent of CD4 T cells.
32,43

Together, these
studies indicate that IFN-γ is required for optimal
CD8-mediated GVL effects and inhibition of
CD4-induced GVHD in allogeneic BMT recipi-
ents treated with a single injection of IL-12 on the
day of transplantation.
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We have recently evaluated the role of IFN-γ in
regulating the GVHD-inducing activity and GVL
effects of CD8 T cells in mice not receiving IL-12
treatment. In these studies, C57BL/6 mice were
lethally irradiated and transplanted with CD4-
depleted (or purified CD8

+
) spleen cells and mar-

row cells from wild-type or IFN-γ-deficient
BALB/c mice with or without host-type EL4 lym-
phoma cells.

68
Remarkably, the results demonstrate

that the GVHD-inducing activity and GVL effects
of allogeneic CD8 T cells can be separated by a sin-
gle cytokine, IFN-γ. Compared to the IFN-γ wild-
type CD8 T cells, IFN-γ-deficient donor CD8 T
cells induce more severe systemic GVHD but
weaker GVL effects against host-type lymphoma
cells in allogeneic BMT recipients. IFN-γ has been
shown to mediate anti-tumor effects by directly in-
hibiting tumor cell growth and inducing T cell-me-
diated anti-tumor responses.

49-54
However, EL4 cells

are not susceptible to an IFN-γ-mediated anti-pro-
liferative effect in vitro and are highly sensitive to
alloreactive CTLs from both IFN-γ+/+

and IFN-γ-
deficient BALB/c mice. Treatment with IFN-γ in
vitro up-regulates the expression of Fas and MHC
class I on EL4 cells, but only moderately increased
the susceptibility of EL4 cells to the cytotoxicity of
allogeneic CD8 T cells, consistent with the high ex-
pression of class I and Fas and the sensitivity to al-
loreactive CTLs of EL4 cells without exposure to
IFN-γ. Therefore, the reduced GVL effect in mice
transplanted with IFN-γ-deficient donor CD8 T
cells is unlikely due to a lack of IFN-γ-mediated di-
rect inhibition of leukemic cell growth, or to re-
duced killing of donor CTLs against EL4 cells.

It has been shown that IFN-γ plays an important
role in regulating chemokine production and there-
by directing the tissue infiltration of activated, in-
cluding alloantigen-primed, T cells.

55-59
Studies using

an immunogenic tumor model demonstrated that
the failure of cytolytic effectors (“tumor-antigen”-
specific CD8 T cells) to remain at the site of the tu-
mor is a major limitation in the ability of CD8 T
cell responses to control tumor growth.

60
Contact-

dependent lysis is also critical for alloreactive CTLs
to mediate GVL effects in allo-BMT recipients. It
has been reported that Tc1 cells are more efficient
than Tc2 cells in migrating into the draining lymph
nodes in vivo, and that the in vivo homing proper-

ties of IFN-γ-competent Tc1 cells differ from those
of IFN-γ-deficient Tc1 cells.

61
Moreover, it has

been suggested that IFN-γ contributes to alloreac-
tive donor T cell infiltrates in lymphoid tissues and
lymphoid hypoplasia associated with GVHD,

62,63

suggesting that IFN-γ may direct alloresponses to-
ward the lymphohematopoietic system rather than
the parenchymal GVHD target tissues. Thus, it is
possible that the reduction of GVL effects in mice
receiving IFN-γ-deficient donor cells reflects a lack
of sufficient contact between donor CD8 T cells
and the leukemic cells within the lymphohe-
matopoietic system, and that the increased GVHD
is due to increased T cell migration into the
parenchymal GVHD target tissues.

Concluding Remarks
IFN-γ is primarily produced by activated T cells.

Therefore, the level of IFN-γ in patients receiving
allogeneic BMT may reflect ongoing allorespons-
es.

64-67
However, the correlation between high levels

of IFN-γ and severe GVHD does not necessarily re-
flect a harmful role of this cytokine in the patho-
genesis of GVHD. Although controversies remain,
it is clear that lethal acute GVHD can be induced
in the absence of IFN-γ and, at least in some situa-
tions, that IFN-γ may inhibit the development of
GVHD. Moreover, this cytokine is required for the
induction of optimal GVL effects. Thus, global
suppression of IFN-γ production should be avoid-
ed as an approach to preventing or treating GVHD
in leukemic patients. Greater understanding of the
mechanisms by which IFN-γ regulates the alloreac-
tivity of donor T cells would facilitate the develop-
ment of approaches to dissociating GVL effects
from GVHD, and ultimately refine clinical proto-
cols for the performance of HLA-mismatched allo-
geneic BMT in leukemic patients.
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